Characterisation of EXS73565, a Potent and Selective MALT1 Inhibitor with Low Drug-drug Interaction Risk and Potential in Lymphoma

Andrew C. Payne¹, Catarina A. Carvalheda¹, David Evans¹, Marta Pinto², Sylvie Gomez², Lorene Crespin², Sabrina Pucci², Chris Radoux¹, Simon Richards¹, Jérémy Besnard¹, Simon Varzandeh¹, Angeline E. Gavard¹, Sean Robinson¹, Frauke Breitgoff¹, Andrew J. Cooke¹, Anthony Bradley¹, Major Goovit¹, Maria Dominguez¹, Tom Wilde¹, Anthony Padfield², Anne-Sophie Casagrande², Giuseppina Claps², Frédérique Dol-Gleizes², Peter C. Ray¹; ¹Exscientia, ²Evotec

INTRODUCTION

Mucosa-associated lymphoid tissue lymphoma translocation 1 (MALT1) is a key component of dysregulated antigen signalling pathways in B-cell malignancies.¹ MALT1 protease activity is crucial for activation of the NF- κ B pathway which is activated in diffuse large B-cell lymphoma (DLBCL) subtypes.¹ Inhibition of MALT1 may have benefit for haematological malignancies where MALT1 is constitutively activated, such as activated B-cell (ABC)-DLBCL, as a single agent or in combination with BCR signalling pathway modulators such as BTK inhibitors (BTKi).^{1,2}

Current MALT1 inhibitors (MALT1i) also inhibit UDPglucuronosyltransferase 1A1 (UGT1A1), potentially posing a hyperbilirubinaemia risk, which was the most frequently reported adverse event for JNJ-67856633 (JNJ-633) in Phase 1 studies.³

Here, we present EXS73565 ('565), a differentiated and highly efficacious MALT1i with minimal UGT1A1 activity, mitigating potential risk of hyperbilirubinaemia.

METHODS

'565 was characterised in a range of preclinical models and **ADMET studies:**

- Anti-proliferative activity on OCI-Ly3 or TMD8 cells was determined using CellTiter-Glo[®] after 4 days of treatment
- Proliferation of CLL patient peripheral blood cells cultured for 5 days in the presence of a feeder cell line (S5 cells), CpG, IL-2 and '565 (or DMSO) was determined by flow cytometry using CellTrace[™] Violet dye
- In vivo studies: Xenografts were grown subcutaneously in NXG mice (OCI-Ly3 model), CB.17 SCID mice (OCI-Ly10 model) and NOD SCID mice (TMD8 model)
- In vitro UGT1A1 and transporter inhibition studies performed:

Transporter	Source	Probe Substrate		
UGT1A1	Recombinant Supersomes™	Oestradiol		
OATP1B1	Overexpressed in			
OATP1B3	HEK293 cells	[³ H]-oestradiol 17β-D-glucuronid		
MRP2	Overexpressed in			
BSEP	(HEK cell-derived)	[³ H]-taurocholic acid		

Table 1: '565 is differentiated against competitor compounds

Paramete r	Phase 2 (Janssen JNJ-633)	Phase 1 (Mid-size pharma patent examples)	Phase 1 (Biotech patent examples)	EXS73565	 Generative AI design employed to deliver
Biochemical IC ₅₀ (<100 nM)					
OCI-Ly3 IL-10 IC ₅₀ (<100 nM)					 Potent and highly se
OCI-Ly3 proliferation IC ₅₀ (<400 nM)					Allosteric MALT1i
TMD8 IL-10 IC ₅₀ (<200 nM)					 Favourable ADME pr
TMD8 proliferation IC ₅₀ (<300 nM)					Poor inhibitor of UGI
UGT1A1 IC ₅₀ (>10 μM)					compared with com
Hu heps Clint,u (<20 ml/min/kg)					compounds
Caco-2 A-B Papp (>5 × 10 ⁻⁶ cm/s)					
FaSSIF solubility (>50 µg/mL)					Meets or exceeds criteria
Cerep/full kinase panel					Minor deviation

Table 2: '565 has a low predicted risk of hyperbilirubinaemia

			UGTIAL						
Compound	Best-estimate Scenario	C _{max,u} (I _{max,u,inlet})	IC ₅₀ (μM)	IC ₅₀ /I _{max,u,inlet}	R _{free}	R _{in,free}	Fi	Predictio	
JNJ-633	t _½ :127 h (230 mg QD)	0.28 (0.32) µM	0.76	2.4	1.37	1.42	0.27	Hyperbilirubina	
'565	t _½ : 39 h	0.30 (0.42) µM	>10	34	1.02	1.03	0.02	Low Ris	

 $C_{max,u} \& I_{max,u,inlet}$: Predicted maximum free plasma & free liver inlet concentration, respectively. $I_{max,u,inlet} = f_{u,p} \times (C_{max} + (F_a \times F_g \times k_a \times Dose)/Q_h/R_B)$. Predictors $(R_{free}, R_{in,free}, and F_i)$ used to link clinical hyperbilirubinaemia with enzyme/transporter inhibition. $R_{free} = 1 + C_{max,u}/IC_{50}$; $R_{in,free} = 1 + I_{inlet,max,u}/IC_{50}$; $F_i = 1 - [IC_{50}/(IC_{50} + C_{max,u})]$; Suggested cutoffs: $R_{free} > 1.1$; $R_{in,free} \ge 1.5$; $F_i > 0.2.5$

At predicted human efficacious doses, UGT1A1 IC₅₀/I_{max.u.inlet} margin is 14-fold greater for '565 compared with JNJ-633 (230 mg QD estimate for JNJ-633 comparable with 300 mg QD recommended Phase 2 dose)

Figure 1: '565 is efficacious in ABC-DLBCL xenograft models and primary human CLL cells A) OCI-Ly3 B) OCI-Ly10 C) TMD8

E) ABC-DLBCL Cell Lines Evaluated							
Cell line	CD97A/B	CD97A/B CARD11 MYI		Ibrutinib- sensitive in vitro	MALT1i- sensitive in vitro		
OCI-Ly3	Wild-type (WT)	L244P	L265P	No	Yes		
OCI-Ly10	Δ191-208 (CD79A)	WT	L265P	Yes	Yes		
TMD8	Y196H (CD79B)	WT	L265P	Yes	Yes		

RESULTS

- IC_{50} , predictors R_{free} and F_i (based on UGT1A1 inhibition) flag JNJ-633 for hyperbilirubinaemia risk, consistent with Phase 1 clinical findings³
- Calculated predictors are below the cutoffs for '565 suggesting minimal hyperbilirubinaemia risk (supported by transporters OATP1B1/3, BSEP and MRP2 inhibition; data not shown)

Figure 1: Significant tumour growth inhibition observed for single agent '565 and/or in combination with ibrutinib (Ibru) in (A) OCI-Ly3, (B) OCI-Ly10, (C) TMD8 xenograft models and (D) primary human CLL cells. (E) Characteristics of ABC-DLBCL cell lines evaluated^{2,4}. Tumour volume and % inhibition shown as mean (+/- SEM). P-values determined by mixed model with either repeated measures performed on the log transformed data followed by Tukey's multiple comparison test at each time point (TMD8), or repeated measures performed on day factor followed by Dunnett's comparison test (OCI-Ly3), or two-way ANOVA with Dunnett's comparison test (OCI-Ly10; *P ≤ 0.05 , **P ≤ 0.01 , ****P ≤ 0.0001).

Poster: 832P

Copies of this poster obtained through QR (Quick Response) and/or text key codes are for personal use only and may not be reproduced without written permission of the authors.

DISCUSSION

The selective allosteric MALT1i '565 exhibits in vitro anti-proliferative activity (on ABC-DLBCL cell lines and primary human CLL cells) and *in vivo* efficacy in mouse xenograft models both as a single agent or in combination with ibrutinib, including synergistic efficacy in the challenging TMD8 model.

In contrast to competitor MALT1 compounds in development, '565 poorly inhibits UGT1A1, an enzyme involved in bilirubin disposition. We hypothesise that the high UGT1A1 (and transporter) $IC_{50}/I_{max,u,inlet}$ margins at the predicted human efficacious dose for '565 will mitigate potential risks of DDI/hyperbilirubinaemia that could limit dose escalation and the level of target engagement necessary to achieve clinical efficacy.

CONCLUSIONS

- '565 displays favourable properties and offers competitive differentiation, particularly in combination strategies with BTKi
- '565 has potential in a broad range of haematologic malignancies either as a monotherapy or combination therapy
- IND-enabling activities and CMC readiness work are ongoing

Our precision-designed MALT1i '565 has minimal UGT1A1 inhibition risk while maintaining robust potency and selectivity.

REFERENCES

- 1) Rosebeck et al. Science, 2011
- 2) Nagel et al. Oncotarget, 2015
- 3) Hertzberg et al. Hematol Oncol, 2023

For more information: mgooyit@exscientia.ai

Major Gooyit is an employee of Exscientia and owns stock and/or holds stock options in the Company.

4) Fontan et al. Blood, 2021

5) Tatrai et al. Pharmaceutics, 2020

'565 lective

roperties T1A1 petitor

Major deviation Not tested

emia Risk